DSP

Chapter-4 : Filter Realization

Marc Moonen
Dept. E.E./ESAT-STADIUS, KU Leuven
marc.moonen@esat.kuleuven.be
www.esat.kuleuven.be/stadius/

Filter Design Process

Step-1 : Define filter specs
Pass-band, stop-band, optimization criterion,...
Step-2 : Derive optimal transfer function
FIR or IIR design
Step-3 : Filter realization (block scheme/flow graph)
Direct form realizations, lattice realizations,...
Step-4 : Filter implementation (software/hardware)

Finite word-length issues, ... Chapter-5

Question: implemented filter-= designed filter ?

‘You can'’t always get what you want’ -dagger/Richards (?)
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Chapter-4 : Filter Realization

* FIR Filter Realization

* lIR Filter Realization

PS: Will always assume real-valued filter coefficients
PS:

A: See Chapter-5!
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FIR Filter Realization

FIR Filter Realization

=Construct (realize) LTI system (with delay elements,
adders and multipliers), such that 1/0O behavior is given by..

ylk]=b,.ulk]+b,.ulk —1]+...+ b, .ulk — L]

Several possibilities exist...
1. Direct form
2. Transposed direct form
3. Lattice realization (LPC lattice)
4. Lossless lattice realization
5. Frequency-domain realization: see Part-1V
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FIR / 1. Direct Form

ylk]=b,.ulk]l+ b, .ulk —1]+...+ b, .ulk — L]

ulk]  ulk-1] ulk-2] u[k-3] u[k-4]
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FIR / 2. Transposed Direct Form

Starting point is direct form :

‘Retiming’ =

select subgraph (shaded) ulk] _ufk-1]
remove one delay element on all ?
inbound arrows add one delay

element on all outbound arrows
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FIR / 2. Transposed Direct Form

"Retiming’ : repeated application results in...

i.e. ‘transposed direct form’

(=different software/hardware (pipeline delays’), Same i/o-behavior)
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FIR / 3. Lattice Realization

Derived from combined realization of...
H(z): ylkl=b,.ulkl+ b, .ulk —1]+...+ b, .u[k— L]
...with “flipped’ version of H(z)
H(z)=z"H(z"): 3lkl=b, ulkl+b, ,ulk—1]+...+b,.ulk — L]

Reversed (real-valued) coefficient vector results in...

2

\ﬁ(z)\;jw -A@HCY|_, - =|HE)

z=e/?

i.e. -same magnitude response
- different phase response
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FIR / 3. Lattice Realization

Starting point is direct form realization...

ulk]__ ulk-1] _ ulk-2] _ u[k-3] _ u[k-4]

AJRTSE AR

Now 1 page of maths...
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FIR / 3. Lattice Realization

PS: find fix for case bo=0 PS: if |ko|=1, then transformation matrix is rank-deficient
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FIR / 3. Lattice Realization

This is equivalent to...

...Now repeat procedure for shaded graph
(=same structure as the one we started from)
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FIR / 3. Lattice Realization

(= different software/hardware, same i/o-behavior)
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FIR / 3. Lattice Realization

Also known as ‘linear predictive coding (LPC) lattice *
K's are so-called “reflection coefficients’
Every set of b’s corresponds to a set of Ki's, and vice versa

Procedure for computing Ki’'s from bi's corresponds to the
well-known “Schur-Cohn’ stability test (from control theory):

Problem = for a given polynomial B(z), how do we find out if all the zeros
of B(z) are ‘stable’ (i.e. lie inside unit circle) ?

Solution = from bi’'s, compute reflection coefficients Ki's (=proce@dure on
previous slides). Zeros are (proved to be) stable iff all Ki's statisfy |Ki[<1!

Procedure (page 10) breaks down if |Ki|=1 is encountered. Then have to
select other realization (direct form, lossless lattice, ...) for B(z)

Lattice form not overly relevant at this point, but sets stage for similar
derivations that lead to more relevant realizations (read on...)
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FIR / 4. Lossless Lattice Realization

Derived from combined realization of H(z)...
Ykl =by.ulk]l+b,.ulk —1]+...+ b, .ulk— L]

$1k1 = by.ulk 1+ byulk =11+ ...+ by ulk — L]
...which is such that

H(z).H(z")+ H(2).H(z") =1 ¢)

PS : Interpretation ?... (see nextsiide)

PS : May have to scale H(z) to achieve this (why?) (scaling omitted here)
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FIR / 4. Lossless Lattice Realization
: Interpretation ?

When evaluated on the unit circle, formula (*) is
equivalent to (for filters with real-valued coefficients)

~ 2 H i)
T
_ H (e’ “’

e, BAG oo () orefBBWEncomplementa
(= form a 1-input/2-output loSSIESS™ system, see also below)
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FIR / 4. Lossless Lattice Realization

PS : How is computed ?

H(z).H(z") = 1- H(z).H(z")

R(z)

Note that if zi @2 is @ root of R(z), then 1/zi @nd 12 is also
a root of R(z). Hence can factorize R(z) as

H@AGC) = [ [ -2)-2) e A =a] [ -

Note that zi" s can be selected such that all roots of lie inside the
unit circle, i.e. ﬁ(z) is a minimum-phase FIR filter.

This is referred to as spectral factorization, =spectral factor.
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FIR / 4. Lossless Lattice Realization

Starting point is direct form realization...

ulk] _ u[k-1] _ u[k-2

S | | R

Now 1 page of maths...

17 /40
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FIR / 4. Lossless Lattice Realization

= orthogonal
vectors

I;(z) { cosf), -—sin@,

Y(2) sin@, cosd,

[ cosf, -—sind,

sinf, cos6,

%) 1= H(2).H(z)+ H (@) H &) = (by.b, + by by) (2 +2DH (D@ T+ ()2
0 o 1




FIR / 4. Lossless Lattice Realization

This is equivalent to...
ulk] _ ulk-2] __ u[k-2] u[k-3]

% )= |~ (= |(x)
b o b’ 1 "2 b’ 3

+) +L+

R ) —()—

+ )

Now shaded graph can again be proved (***) to be
power complementary system (Intuition? Hint: p.21).
Hence can repeat procedure...

s T B N Ao | 5 . 2 0 |[ coso, sing, |[ coso, —sing, |[ =0 o ]| Au» | [ 5 .. " A2
ey h{H(z) H(z )][ H(Z)]—[ Ho(z') Hy(z ’Ho 1” —sin6, cost, || sing, cos, [| o 1 | mo |TL T TV TG

FIR / 4. Lossless Lattice Realization
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FIR / 4. Lossless Lattice Realization

Lossless lattice :

« Also known as “paraunitary lattice *

» Each | 2-input/2-output section | is based on an orthogonal

transformation, which preserves norm/energy/power

our, IN,

ouT, cosf -sinf][IN,
|sind  cos@ |

} = (IN,)} +(IN,)* = (OUL,Y’ +(OUL)?

i.e. forms a 2-input/2-outputflossless hsystem (=time-domain view)

Overall system is realized a$ w& lossless sections

(+delays), hence is itself also s’ (see p.15, =freq-domain view)
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FIR / 4. Lossless Lattice Realization

PS : Can be generalized to 1-input N-output lossless systems
(will be used in Part-1V) (compare to p.20 !)

O Ty (N Y (Y[t | explain/derive!



lIR Filter Realization

lIR Filter Realization
=Construct (realize) LTI system (with delay elements, adders
and multipliers), such that I/0O behavior is given by..
_ B(z) _ b, +blz_1 +...+bLz_L
A(z) l+az'+..+az"

H(2)

Several possibilities exist...
1. Direct form
2. Transposed direct form
PS: Parallel and cascade realization
4. Lattice-ladder realization
5. Lossless lattice realization
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IR/ 1. Direct Form

_B(z) by+bz'+..+bz"
A(Z) l+az'+..+a,z"

PS : If all ai=0 (i.e. H(z) is FIR), then this reduces to a direct form FIR
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lIR/ 2. Transposed Direct Form

Transposed direct form is similath.easily obtained (after retiming ..)

PS : If all ai=0 (i.e. H(z) is FIR), then this reduces to a transposed direct form FIR
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IR/ PS: Parallel & Cascade Realization

Parallel realization based on partial fraction decomposition

L L, -1
H(z)=B(z)=CO+E a, +2 Y, +0,z

A(2) S+ Bz “lrez +@u77
— Each term realized in, e.g., direct form
— Transmission zeros are realized iff signals from
different sections exactly cancel out

For simple poles

(=difficult in finite word-length implementation)

Cascade realization based on pole-zero factorization
ulk]

L/2

l+a,.z7' +B,.27°
by ] [FroE thiz

= =)
i 1+y,.27 +6,.2

ForLeven e

— Cascade realization is not unique (details omitted)
(=multiple ways of pairing poles and zeros (need for ‘pairing procedures’)
and multiple ways of ordering sections in cascade) Y[k]

— Each section(viquad’) realized in, e.g., direct form W
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IR / 3. Lattice-Ladder Realization

Derived from combined realization of

B(z) by+bz'+..+b "
l+az " +...+a,z7"

H(z)=

A(z) _a +a, z' +..+1.z7"

A(2) l+az ' '+...+a,z"

H(z)=

- Numerator polynomial is denominator polynomial with

reversed coefficient vector (see also p.8)
- Hence [i{83) is an "all-pass’ (="SISO lossless ) filter :

= 7 —1 7 2 |A(Z)2— 22
A@HGEH=1  |HG[_, " & S
%

z=e’"
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IR / 3. Lattice-Ladder Realization

Starting point is direct form realization...

‘state vector’
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IR / 3. Lattice-Ladder Realization

a a a q

If A(z) = stable polynomial (-“oul" o
a1 fie X Then |Ko|<1 (cfr.Shur-Cohr® ‘e. =¢ fine
bl bl b) b4

6o g 1|70
b'] va b‘l

with b =b,-ba,, b'\=b-ba, b,=b-ba, b=b-ba
Now proceed as on page 11 (FIR lattice)

et (ay=1#0) if i1 (see also next page)
G . |
. o cosfl,  cosfl,
OH UG 2 dy 00
0 ‘ < ) 4 |

U@ <osf, . 7 cosfl, -sinf, Uz)
Rearrange the first 2rows | Il H = 15
1(z) sinfl, cosfl, || " Y5(2)

sinfl,

cos,
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IR / 3. Lattice-Ladder Realization

Then this is equivalent to...
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IR / 3. Lattice-Ladder Realization

Procedure can be repeated (explain), leads to “lattice-ladder form’

<) ‘lattice part’

‘ladder part’

DSP 2016 / Chapter-4: Filter Realization

IR / 3. Lattice-Ladder Realization

PS: Similar derivation leads to 2n9 ‘|attice-ladder’ form

<} ‘lattice part’

‘ladder part’
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IR / 3. Lattice-Ladder Realization

« Ks (=sin(thetai) !) are ‘reflection coefficients’

Procedure for computing Ki’s from ai’'s again corresponds to
‘Schur-Cohn’ stability test

Orthogonal transformations correspond to 2-input/2-output
‘lossless’ sections  (=time-domain view).

cosf sind][IN,

. = (IN,)* +(IN,)* = (OUT)* + (OUT, )*
_sin® cos||IN, (IN))” +(IN,)" = (OUT))" +(OUT,)

Cascade of lossless sections (+delays) is also " lossless”,

i.e. ‘all—pass’ (see p.27, =freq-domain view)

DSP 2016 / Chapter-4: Filter Realization

IR / 3. Lattice-Ladder Realization

PS : Note that the all-pass part corresponds to A(Z) (.. L angles 6 correspond to L coeffs
a) While the ladder part corresponds to B(z). If all ai=0 (i.e. H(z) is FIR),
then all 6i=0, hence the all-pass part reduces to a delay line, and the
lattice-ladder form reduces to a direct-form FIR.

PS : "All-pass’ part (SISO u[k]->ﬁk]) is known as “Gray-Markel’ structure
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IR / 4. Lossless Lattice Realization

Derived from combined realization of (possibly rescaled, as on p.14)

B(z) by+bz'+..+bz"
l+az "' +..+a,z7"

H(z)=

_ B(2) _ 50 +l§1.z‘1 +...+I§L.z‘L
A(Z) l+az'+..+az"

such that...
H(z).H(EH)+H(z).H(Ez ) =1
= B(2).B(z™)+B@).BE") = AR).AG™)
i.e. and are “power complementary’ (p.15)
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IR / 4. Lossless Lattice Realization

Starting point is direct form realization...

‘state vector’
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IR / 4. Lossless Lattice Realization

lli((z)) | : Now it is proved that
10 From (**) p.35 it follows tha*

o
=| 0 cosy, -siny, | By b\ b, b
0 siny, cosy,

or S0 B g §a iy
cosy, b,

o 0
= 0 cosy, -siny, ||
0 siny, cosy,

PS: right-hand side of (.. he
modulus <1 (her = [s"16L “1, ._u0#0) Y

\ — Dy
which follov'  >m  uluw pre arty’ cosf - cosf dy d dy d
*k ‘ i G sinfy 1 = bbb 2 2 X
for( ) cosy, -sinyy || oty L[| i b‘l b‘z b‘g h‘, [ 7.2 ] (2)
) By by by

siny,  cos
Yy cosyy 0 0
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IR / 4. Lossless Lattice Realization

Rearranging rows, etc.., and repeating the order-reduction
process, leads to...
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IR / 4. Lossless Lattice Realization

» Opthegenal transformations correspond to (3-input 3-output)

‘lossless sections *
ouUT, 1 [. . .J[IN,

our,|=|. . .||m,
our,| |. . .||,

= (IN,)’ +(IN,)’ + (IN,)’ = (OUT,)* +(OUT,)* + (OUT,)’

Overall system is realized as cdscadelef lossless sections
(+delays), hence is itself alsof'lossless *

- PS:Ifall a=0 (i.e. H(z) is FIR), then all 8i=0 and then this

reduces to FIR lossless lattice '
— C

+ PS : If all ¢i=0, then this reduces to Gray-Markel structure '
—
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IR / 4. Lossless Lattice Realization

PS : Can be generalized to 1-input N-output lossless systems
(=combine p.22 & p.38 !)
ulk]
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